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Motivation

I Both person A (Mr. Smart) and person B (Mr. Stupid) work
for KOSBI in Seoul. Suppose person A took a job training
program and person B didn’t. (KOSBI didn’t encourage A to
take the training program and didn’t discourage B not to take
it.) After participating in the program, whereas B earns
€1,000/mth, A earns €1,200/mth.

I In case policy makers (KOSBI CEO) would be interested in
evaluating the job-training effectiveness, can we conclude that
the job-training increased A’s earning by €200?

I Why is this an incorrect measure of the training effects?
Person A is NOT comparable to person B: age, education,
language skills, etc.
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Motivation

I Now assume that person B has the same covariates such as
gender, education, age, etc.
The €200 would be a correct measure?
Maybe not!!!

I What if person A is smart – real IQ that we cannot measure is
120 – and person B is not smart (IQ=80) and IQ is positively
correlated with wages and participation in training?
Over- or underestimate?
The correct answer should be ’overestimate’.

I Why?
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Motivation

I What does make things difficult to estimate the true
treatment effect (job-training effectiveness)?

I Basically we don’t know about the counterfactual wage in
case that person A does NOT take the job-training. In other
words, we don’t observe both wages with and without
training for the person A.

I A similar story can be also applied when other treatments are
of our interests such as returns to college education, impact of
migration on wages, etc.
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Unfamiliar Terminologies

I Potential/Counterfactual outcome

I Treatment/Control

I Unconfoundedness/Conditional independence assumption
(CIA)

I Selection on observables

I Average Treatment Effect (ATE)

I Average Treatment Effect on the Treated (ATT)

I Propensity score

I Common support condition

I Balancing properties
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Potential Outcomes Model
For units i = 1, . . . , n,
Ti = 0, 1: treatment (treatment might be ’received financial aid’,
’went to college’ or ’participated in job training’)
Yi (0): potential outcome under control
Yi (1): potential outcome under treatment
Yi = TiY i (1) + (1− Ti )Yi (0): observed outcome

The treatment effect for unit i is

τi = Yi (1)− Y i (0)

In an experimental setting, the average treatment effect (ATE)
for this population is

τ = E (Yi (1))− E (Yi (0))

In words, ATE is the mean over the whole population of the
expected outcome under treatment less the expected outcome
under the alternative treatment (control).
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Potential Outcomes Model

If treatment is randomly assigned, then it should be independent
of potential outcomes (Ti⊥ (Yi (1) ,Yi (0))). Then

E (Yi (1) |Ti = 1) = E (Yi (1)),

E (Yi (0) |Ti = 0) = E (Yi (0)),

and τ = E (Yi (1) |Ti = 1)− E (Yi (0) |Ti = 0) =
E (Yi |Ti = 1)− E (Yi |Ti = 0),
which can be estimated as follows:

τ̂n = ̂E (Yi |Ti = 1)− ̂E (Yi |Ti = 0)

=

∑n
i=1 Yi 1 (Ti = 1)∑n

i=1 1 (Ti = 1)
−
∑n

i=1 Yi 1 (Ti = 0)∑n
i=1 1 (Ti = 0)
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A Simple Numerical Example (Job Training Effects)

Observation Treatment Outcome (wage) Education Gender

1 1 1100 CG M

2 0 900 HG F

3 1 900 HG F

4 0 1000 CG M

5 0 800 HG F

τ̂n =

∑n
i=1 Yi 1 (Ti = 1)∑n

i=1 1 (Ti = 1)
−
∑n

i=1 Yi 1 (Ti = 0)∑n
i=1 1 (Ti = 0)

=
(1100 + 900)

2
− (900 + 1000 + 800)

3

= 100
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Nonrandom Assignment of Treatment

If the treatment randomly assigned, the ATE is identified which is
‘€100’. In many economic studies, however, we usually come
across nonrandom situations.
In that sense, the estimator we used above does not consistently
estimate ATE, τ = E (Yi (1))− E (Yi (0)), because

E (Yi (1) |Ti = 1) 6= E (Yi (1)) ,

E (Yi (0) |Ti = 0) 6= E (Yi (0)) .

i.e. the potential outcomes of self-selected college graduates will
NOT be equal to the ones of randomly selected.

Are there other assumptions that would be sufficient to identify
the treatment effect?
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Unconfoundedness/Conditional Independence Assumption

Ti⊥ (Yi (1) ,Yi (0)) | Xi

This says that Ti is independent of the potential outcomes
conditional on Xi .

In an observational study, CIA means that Ti can be said to be
”as good as randomly assigned”, conditional on Xi .

Behavioral implication of this assumption is that, after controlling
for the variation in outcomes induced by differences in Xi ,
participation in the treatment program does not depend on
outcomes.
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Unconfoundedness/Conditional Independence Assumption

Under unconfoundedness assumption:

(Ti⊥ (Yi (1) ,Yi (0)) | Xi),

we obtain

E (Yi (1) | X i ,T i = 0) = E (Yi (1) | X i ,Ti = 1) = E (Yi | X i , T i = 1)

i.e. If IQ (not ability) is controlled, the outcomes (= observed
outcomes) of college graduates is the potential outcomes of
high-school graduates.
What does that mean by ‘IQ is controlled’?

Why is this concept called ‘selection on observables’ not
‘selection on unobservables’?
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Understanding unconfoundedness with a numerical example
Observation Treatment Outcome (wage) Education Gender

1 1 1100 CG M

2 0 900 HG F

3 1 900 HG F

4 0 1000 CG M

5 0 800 HG F

1. See the first observation.T1 is equal to 1 and the outcome
corresponding to the treatment (T1 = 1) is 1,100. We only
observe the outcome when the first obs is treated.

2. We need to estimate the counterfactual outcome – Y1 (0). In
fact, one of the three observations (2, 4, or 5) in the data can
be used to predict the potential outcome.

3. By the CIA assumption, self-selection bias can be removed.
Controlling for X1 (college graduate, male), T1is independent
of the potential outcomes (Yi (1) ,Yi (0)). Then the outcome
of the 4th obs could be a good match to predict Y1 (0).
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Identification under Unconfoundedness
Subgroup Average Effect is the average effect for individuals
with covariate value x :

ATE (x) = E (Yi (1) | Xi = x)− E (Yi (0) | Xi = x)

= E (Yi |Xi = x , T i = 1)− E (Yi |Xi = x , T i = 0) .

Suppose Xi = x is a discrete variable. Consider the estimator:

τ̂ (x) =

∑n
i=1 Ti 1 (Xi = x)Yi∑n

i=1 Ti 1 (Xi = x)
−
∑n

i=1 (1− T i ) 1 (Xi = x)Yi∑n
i=1 (1− T i )1 (Xi = x)

.

We are simply taking the treatment and control averages for the
subsample with Xi equal to a particular value. Then take sample
analog to the equation ATE = E [ATE (x)] :

τ̂ =
1

n

n∑
i=1

τ̂ (Xi ).
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Identification under Unconfoundedness

The estimator of Subgroup Average Effect:

τ̂ (x) =

∑n
i=1 Ti 1 (Xi = x)Yi∑n

i=1 Ti 1 (Xi = x)
−
∑n

i=1 (1− T i ) 1 (Xi = x)Yi∑n
i=1 (1− T i )1 (Xi = x)

.

For each individual i we estimate τ̂ (x), which can be estimated
using one of the nonparametric techniques such as series
estimator, series logit estimator, nearest neighbor estimator, and
kernel estimator.

Note that regardless whether an individual i is treated or
untreated, we must estimate both potential outcomes for treated
and untreated, except the nearest neighbor estimator.
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Average Treatment Effect on the Treated (ATT)
In many cases, it’s more interesting to estimate the effects of
policy or training for those treated. This leads us to an
identification of the average treatment effect for the treated
population (ATT), which is a bit different concept from ATE:

τT=1 = E (Yi (1) |Ti = 1)− E (Yi (0) |Ti = 1) .

This expression cannot be estimated directly, because Yi (0) is not
observed for treated units. Then can we simply estimate ATT with
the observed difference in outcomes,
E (Yi |Ti = 1)− E (Yi |Ti = 0)?
NO!!!

E (Yi |Ti = 1)− E (Yi |Ti = 0)︸ ︷︷ ︸
Observed difference in outcome

= E (Yi (1)− Yi (0) |Ti = 1)︸ ︷︷ ︸
Average treatment effect on the treated

+ E (Yi (0) |Ti = 1)− E (Yi (0) |Ti = 0)︸ ︷︷ ︸
Selection bias
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Average Treatment Effect on the Treated (ATT)

Assuming unconfoundedness, however, we obtain

E (Yi (0) | X i ,Ti = 1) = E (Yi (0) | X i ,T i = 0) = E (Yi | X i , T i = 0) .

This allows us to identify ATT,

τT=1 = E {E (Yi | X i ,T i = 1)− E (Yi | X i ,Ti = 0) | Ti = 1}

where the outer expectation is over the distribution of X i |Ti = 1.

In words, ATT is the mean over the whole population who get
treatment of the expected outcome under treatment less the
expected outcome under the alternative treatment (control).
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Break

Let’s have 5 min break!
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Review of Notation and Terminology
Yi (0): potential outcome under control
Yi (1): potential outcome under treatment
Yi= TiY i (1)− (1− Ti )Y i (0) = observed outcome
Average treatment effect (ATE) for the population is:

τ = E (Yi (1))− E (Yi (0)) .

Subgroup Average Effect is the average effect for individuals
with covariate value x :

ATE (x) = E (Yi (1) | Xi = x)− E (Yi (0) | Xi = x)

= E (Yi |Xi = x , T i = 1)− E (Yi |Xi = x , T i = 0) .

Then the ATE is represented as: ATE = E [ATE (x)].
Average treatment effect for the treated population (ATT) is:

τT=1 = E (Yi (1) |Ti = 1)− E (Yi (0) |Ti = 1) .

Assuming unconfoundedness, we identify ATT as

τT=1 = E {E (Yi | X i ,T i = 1)− E (Yi | X i ,Ti = 0) | Ti = 1} .
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Relationship between POM and Linear Regression Model
What does the parameter of the dummy variable in a typical linear
regression function represent – is it either ATE or ATT? Suppose
Conditional Expectation Function (CEF) is linear as:

E (Yi | X i ,T i ) = β1 + Tiβ2 + X
′
i β3 + (TiXi )

′
β4.

This implies:

E (Yi | X i ,Ti = 0) = β1 + X
′
i β3,

E (Yi | X i ,Ti = 1) = (β1 + β2) + X
′
i (β3 + β4) .

We could then estimate this regression function by OLS, and then
estimate τ (x) by:

τ̂ (x) = ̂E (Y |X = x ,T = 1)− ̂E (Y |X = x ,T = 0) = β̂2 + x
′
β̂4.

Note that we would have different ATE (x), depending on x . Then
the estimate of the overall average treatment effect would be

τ̂ =
1

n

n∑
i=1

(
β̂2 + X

′
i β̂4

)
= β̂2 + X

′
β̂4.
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Relationship between POM and Linear Regression Model

If we run the regression with
(
Xi − X

)
,

E (Yi | X i ,T i ) = β1 + Tiβ2 +
(
Xi − X

)′
β3 + Ti

(
Xi − X

)′
β4.

Then we will have
τ̂ = β̂2.

How do we estimate ATT?

τ̂T=1 =
1∑n

i=1 1 (Ti = 1)

n∑
i=1

1 (Ti = 1) ·
(
β̂2 + X

′
i β̂4

)
.

Note that if X = XT=1, then ATE would be equal to ATT.
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Relationship between POM and Linear Regression Model

Any intuition why...

if X = XT=1, then ATE would be equal to ATT.

In the observational studies, treatment is random conditional on
covariates (X ).

In other words, the treatment effects of individuals are determined
by the covariates.

Therefore, if X = XT=1, average treatment effects would be
equivalent to average treatment effects on the treated.

Note also that X = XT=1 means XT=1 = XT=0 ...
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Relationship between POM and Linear Regression Model

In typical regression analysis including dummy variables, we do
NOT include the interactions between T and X as below.

E (Yi | X i ,T i ) = β1 + Tiβ2 + X
′
i β3.

What does this say?
It implicitly implies that there is no difference in the coefficients of
X between treated and control (1). We can interpret
β̂2 as an estimate of ATE under a restricted model.

What about ATT?
Here we assume that Treatment Effect is invariant across
individuals (2) so that ATE should be equal to ATT, which is β̂2.
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The Propensity Score

Unfortunately, we run into problems if the covariate vector X is
high-dimensional (curse of dimensionality). Unless the sample size
is huge, it’s hard to find two observations that are really “close” to
each other along every dimension of X .

Theorem
Theorem 1 (Rosenbaum and Rubin 1983): Let p (Xi ) be the
probability of unit i having been assigned to treatment, defined as
p (Xi ) ≡ Pr (Ti = 1 | Xi ) = Pr (Ti | Xi ) . Suppose that
Ti⊥ (Yi (1) ,Yi (0)) | X i and 0 < Pr (Ti = 1 | Xi ) < 1 for all Xi .
Then

Ti⊥ (Yi (1) ,Yi (0)) | p (Xi ) .
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The Propensity Score

Corollary

If Ti⊥ (Yi (1) ,Yi (0)) | X i and assumptions of Theorem 1 hold,
then

τT=1 = E {E (Yi |p (Xi ) ,T i = 1)− E (Yi |p (Xi ) ,Ti = 0) | Ti = 1} ,

assuming that the expectations are defined. The outer expectation
is over the distribution of p (Xi ) |Ti = 1.

The earlier version for ATT without P-score is:

τT=1 = E {E (Yi | X i ,T i = 1)− E (Yi | X i ,Ti = 0) | Ti = 1} .
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Estimation Strategy of ATT using P-Score Matching
When identifying τT=1, E {E (Yi |p (Xi ) ,T i = 1) | Ti = 1} is easily
estimated, but counterfactual outcomes need to be estimated for
E {E (Yi |p (Xi ) ,Ti = 0) | Ti = 1}.

Let s0 (p) = E (Yi (0) |p (Xi) = p). By Theorem 1,

s0 (p) = E (Yi |Ti = 0, p (Xi ) = p) .

The idea is to compare individuals who based on observables have
a very similar probability of receiving treatment (similar propensity
score). We estimate potential outcomes of the treatment group by
matching with the outcomes of control group, based on the
propensity score.
Then we can form the following estimator of the ATT:

τ̂T=1 =

∑n
i=1 Yi 1 (Ti = 1)∑n

i=1 1 (Ti = 1)
−
∑n

i=1 ŝ0 (p (Xi ))1 (Ti = 1)∑n
i=1 1 (Ti = 1)
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Estimation Strategy of ATT using P-Score Matching

Think about the single-nearest neighbor estimator of s0 (p).
Then this amounts to finding the untreated individual with
propensity score closest to treated individual i .
Now we are “matching” individuals based on the scalar propensity
score, instead of the multidimensional variable Xi .

Then how can we estimate ATE?
Let s1 (p) = E (Yi (1) |p (Xi) = p). Again, by Theorem 1,

s1 (p) = E (Yi |Ti = 1, p (Xi ) = p) .

Hence, we can form the following estimator of the Average
Treatment Effect:

τ̂ =
1

n

n∑
i=1

[ŝ1 (p (Xi ))− ŝ0 (p (Xi ))]

26 / 39



Estimating Treatment Effects using P-Score Matching

Average Treatment Effect on the Treated (ATT):

τ̂T=1 =

∑n
i=1 Yi 1 (Ti = 1)∑n

i=1 1 (Ti = 1)
−
∑n

i=1 ŝ0 (p (Xi ))1 (Ti = 1)∑n
i=1 1 (Ti = 1)

Average Treatment Effect (ATE):

τ̂ =
1

n

n∑
i=1

[ŝ1 (p (Xi ))− ŝ0 (p (Xi ))]

Note the difference in estimation between ATE and ATT.
Note also that

1. We do not mention about standard error in this presentation.

2. An observation in the untreated (as well as the treated for the
case of ATE) can be used more than once to construct the
counterfactual outcomes, depending on matching methods.
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Covariates for the estimation of the propensity score
In practice, what variables should be included to estimate
propensity score?

1. Basically, the covariates should be predetermined. If your
covariates are affected by the treatment, they will be bad
controls. Bad controls are variables that are themselves
outcome variables in the notional experiment at hand. That
is, bad controls might just as well be dependent variables
too. Good controls are variables that we can think of as
having been fixed at the time the regressor of interest was
determined.

2. The variables in the estimation of propensity score are
supposed to partly determine both outcome and treatment.
[INTUITION: 1) There is no need to include variables
unrelated to the treatment variable - those will have no
explanatory power. 2) If some variables are uncorrelated with
the outcome variable, they are not useful to resolve selection
issue even if included.]
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Covariates for the estimation of the propensity score

We need to include variables to satisfy CIA conditions. Say we’d
like to estimate the return to college education. CIA implies
that potential wages are uncorrelated with the decision to go to
college, if variables to proxy motivations (or innate ability) are
controlled.
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Covariates for the estimation of the propensity score

I What do you mean by the controls of motivations? Under the
same level of motivations, it’s unlikely that there exists
correlation between entrance of college (Ti ) and wages
(potential outcome: Yi (Ti )).

I Note that X’s which influence both outcomes and treatment
can be included. On the other hand, the information -
distance to college – cannot be used to satisfy CIA, because
the distance does not directly influence the outcomes.

I Then would it be okay to include distance along with proxy for
motivations? No, propensity score matching method removes
bias from selection on observables, not unobservables. If you
still think that unobservables determine both treatment and
outcome (even after conditioning on a rich set of
observables), we may have to apply different methods, such as
IV methods (2SLS).
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Common Support Condition
While CIA cannot be tested (its plausibility all depends on our
argument), we have a condition and a property to be tested.

Common support condition checks the existence of the p-score
overlap between treated and untreated, by that we obtain potential
outcomes for the untreated. For the binary case, we can implement
this by graphical illustration.
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Common Support Condition: migrants vs. stayers using
GOMS
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Balancing properties

In order to reduce the dimensionality of covariate vector X,
Rosenbaum and Rubin (2002) suggest the propensity score
approach (Theorem 1).

Checking balancing properties is to double-check if this
replacement works. That is, conditional on the propensity
score, the covariates are independent of assignment to treatment,
as in a randomized experiment.

For the binary case, we do this as follows:

1. Split the sample into k equally spaced intervals of the
propensity score (strata), in most cases we divide into 5.

2. Within each interval, test for statistically significant
differences between the distribution of covariates for treated
and comparison units.
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Balancing Property Test

Table: Balancing property tests

Difference Paired t statistics 95% Conf Interval
Age when starting job 2 0.08 0.66 -0.15 0.30
Age squared/100 0.04 0.68 -0.08 0.16
Junior College -0.01 -0.47 -0.05 0.03
Female -0.04 -1.72 -0.09 0.01
Married 0.02 1.14 -0.01 0.05
Log of wage on job 1 -0.00 -0.02 -0.04 0.04
Tenure of job 1 (years) 0.01 0.19 -0.10 0.12
Professional occ on job 1 0.01 0.72 -0.02 0.05
Father w/ college degree 0.02 0.75 -0.02 0.06
Mother w/ college degree 0.01 0.93 -0.02 0.04
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Sensitivity Analysis
Ichino et al. (2008) allows assessment of the sensitivity of ATT
matching estimates.

1. They derive point estimates of the ATT under different
possible scenarios of deviation from unconfoundedness.

I To do so they impose values of the parameters that
characterize the distribution of U.

I Given these parameters, the value of the confounding factor for
each treated and control subject is predicted and the ATT is
reestimated now including the influence of the simulated U.

I By changing the assumptions about the distribution of U, they
can assess the robustness of the ATT with respect to different
hypotheses on the nature of the confounding factor.

2. Their approach also allows one to verify whether there exists a
set of plausible assumptions on U under which the estimated
ATT would be driven to zero by the inclusion of U.

I By modelling the nature of U based on already existing
variables, it is possible to assess the robustness of the estimates
with respect to deviations from unconfoundedness that would
occur if observed factors were omitted from the matching set. 35 / 39



Some Drawbacks of Propensity Score Matching

1. It requires two steps-that is, matching and averaging.

2. Thus, estimating standard errors of the resulting estimates
may not be straightforward, either.

3. A third consideration is that the two-way contrast does not
always do full justice to the problem at hand. If Ti can take
on more than two values such as “years of education”, there
are separate average casual effects for each possible increment
in treatment, which also must summarized in some way.

These considerations lead us back to regression.
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Why Propensity Score Matching?
Do you have an example when we are able to maximize the
benefits of application of p-score approaches? Is it always better
than ordinary regressions?
There are a couple of things of which we can take advantage from
the application of the p-score matching approach.

1. Robust to the specification errors.

2. Nonlinearity: provide a more flexible specification of the
relationship between the covariates and the outcome.

3. Heterogeneity: doesn’t have to assume a constant treatment
effect across individuals.

4. By imposing the common support condition, we can drop
observations for which there are no comparable individuals
across different treatment levels.

Whether it’s because of the reasons above or not, it’s been shown
that the propensity score matching relatively better to replicate
experimental results Dehejia and Wahba (2002).
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Final Notes

I Propensity score matching methods are NOT supposed to
resolve the endogeneity problem.

I They are simply econometric methods which assume selection
on observables.

I In case you are suspicious of endogeneity, you may want to
look for instrumental variables or attempt to apply other
econometric models such as fixed effects estimator.

I To see how to implement P-score matching in STATA, please
refer Becker and Ichino (2002).

I For more practical guidance, please refer Caliendo and
Kopeinig (2008).
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